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A Learning-Based Model Predictive Trajectory
Planning Controller for Automated Driving in

Unstructured Dynamic Environments
Zhiyuan Li , Pan Zhao , Chunmao Jiang , Weixin Huang , and Huawei Liang

Abstract—This paper presents a learning-based model predictive
trajectory planning controller for automated driving in unstruc-
tured, dynamic environments with obstacle avoidance. We first
address the problem of lacking prior knowledge in unstructured
environments by introducing a risk map that maps the density
and motion of obstacles and the road to an occupancy risk. Model
predictive control is then used to integrate trajectory planning and
tracking control into one framework to bridge the gap between
planning and control. Meanwhile, we use Gaussian Process (GP)
regression to learn the residual model uncertainty for improving
the model accuracy. An objective function considering both risks
within the feasible region and vehicle dynamics is carefully for-
mulated to obtain collision-free and kinematically-feasible local
trajectories. Field experiments are performed on real unstruc-
tured environments with our automated vehicle. Experimental
results demonstrate the effectiveness of the proposed algorithm
for successful obstacle avoidance in various complex unstructured
scenarios.

Index Terms—Trajectory planning, automated vehicles, gauss-
ian processes, model predictive control, unstructured environ-
ments, risk map.

I. INTRODUCTION

AUTOMATED vehicles (AVs) have great potential to im-
prove driving safety, reduce traffic congestion, and pro-

vide greater mobility, which has drawn significant attention in
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academia and industry [1]–[3]. With the significant advances in
sensors, computer hardware, software, and other technologies
in the last decade, automated driving technology has achieved
remarkable progress, which is expected to accelerate the devel-
opment of intelligent transportation systems.

The architecture of automated driving generally consists of
three main layers: perception, planning, and trajectory con-
trol [4], and close collaboration between the layers can achieve
the goal of automated driving in complex environments. Tra-
jectory planning and tracking control, the most critical of these
technologies, can significantly improve the comfort and safety
of automated driving. A great deal of research has been carried
out on trajectory planning and tracking control for automated
driving [4]–[6]. However, most of the publications in this field
focus on vehicles operating in highly structured environments
such as highways or urban roads. In contrast, automated driving
in unstructured, dynamic environments plays a vital role in
reducing human resources and improving automation in the mili-
tary, agriculture, transportation, and other fields [7]. It is not easy
to apply these approaches directly from structured environments
to unstructured, dynamic environments. The lack of prior knowl-
edge and traffic rules in unstructured environments becomes a
complex dynamic environment when dynamic obstacles appear,
bringing significant challenges to trajectory planning. Therefore,
there is a great potential value in the research of trajectory
planning and control in unstructured, dynamic environments.

Trajectory planning and tracking control for AVs are typically
treated as two independent problems due to the limited onboard
computing resources [4], [8]. Most recently, some researchers
have integrated trajectory planning and tracking control into
one framework to bridge the gap between planning and con-
trol, and they have achieved remarkable achievements [9]–[12].
However, these methods are mainly studied in structured en-
vironments, with little research in unstructured, dynamic en-
vironments due to the complexity. In general, the challenges of
developing a stable and reliable trajectory planning and tracking
control framework in unstructured, dynamic environments lie
in the following factors: 1) unstructured environments lack
prior knowledge, such as traffic rules, lane markings, and road
boundaries; 2) unstructured environments have high uncertainty,
including inaccurate obstacle locations and irregular movements
of dynamic obstacles; 3) unstructured roads are typically rough,
and the complicated interaction between tires and roads makes
it difficult to model the vehicle dynamics accurately.
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Given the above problems, this paper proposes a learning-
based model predictive trajectory planning controller for au-
tomated driving in unstructured, dynamic environments with
obstacle avoidance. First, we use the drivable area extracted
by the perception system to obtain prior information such as
road width, boundary, and shape. In this way, we can focus the
scope of motion planning mainly in the drivable area, which
improves safety and reduces the complexity of motion planning.
Subsequently, for the uncertainties arising from unstructured
environments, we designed a hierarchical risk map to assess the
risk of roads and different types of obstacles. Finally, to improve
model accuracy in unstructured environments, we use Gaussian
process regression to learn the residual model uncertainty online
based on the collected historical data. We validated our system
both in simulations and on our automated vehicle in real off-road
environments. Experimental results demonstrated the vehicle’s
ability to navigate smooth, collision-free trajectories in dynamic,
unstructured environments.

The remainder of the paper is organized as follows: Section II
describes the related work. Section III presents the system
framework for automated vehicles in unstructured environments
and demonstrates the output of the highly reliable perception
system. Section IV details the construction method of the risk
map and defines the risk for roads and different types of obsta-
cles. Section V presents the nominal vehicle dynamics model,
the learning strategy of the residual model, and the trajectory
planning controller design. The trajectory planning controller
is tested and validated in both simulation and real experiments
under complex scenarios in Section VI and Section VII. We
conclude the paper in Section VIII.

II. RELATED WORK

Risk assessment is an essential process in the design and
development of automated vehicles, and taking risk into consid-
eration in trajectory planning can significantly improve safety
during automated driving [13]–[15]. Research [15] proposes a
risk assessment method that can efficiently calculate the col-
lision risks for a set of pre-configured local candidate paths
along with the lane-based probabilistic motion prediction for
surrounding vehicles. This approach allows for real-time es-
timation of future collision risk associated with surrounding
vehicles. However, this method is mainly applied in multiple
lanes on structured roads. In [10]–[12], they used the concept of
artificial potential fields to establish road and obstacle potential
fields around the ego vehicle. Under the repulsive force of the
potential field, the ego vehicle enables driving in the middle of
the lane and effectively avoids risk. However, they treated both
static and dynamic obstacles as a unified class, which inevitably
cannot accurately capture the risk caused by the motion trend
of dynamic obstacles. In [16], an online Gaussian risk map in
an uncertain environment is proposed, which can be updated
online based on real-time tracking data of obstacles. The risk
map in this approach is constructed separately according to the
characteristics of static and dynamic obstacles, which achieved
satisfying results on both structured and unstructured roads.

However, they cannot address the risk prediction of high-speed
dynamic obstacles.

A large number of motion planning algorithms for mobile
robots have been proposed and applied in unstructured envi-
ronments, such as sampling based, graph search based, artificial
potential field (APF), and optimal methods [17], [18]. The graph
search method discretized the configuration space of mobile
robots as a graph, and then searches for a minimum-cost path in
such a graph. The A* algorithm [19], D* algorithm [20], Dijkstra
algorithm [21] and their improvements are the most common ap-
proaches. In a hierarchical, graph-based, multi-resolution terrain
model, [22] used a distribution-based binary classifier to reduce
the planning search space and combined it with a cost heuristic
to accelerate convergence. Experimental results demonstrate the
applicability to both structured and unstructured environments.
These planners, however, are only applicable to a small range of
known environments and cannot directly consider the continuity
of curvature. Sampling-based methods seek to plan in high-
dimensional spaces that cannot be solved by deterministic meth-
ods. Rapidly-exploring Random Tree (RRT) [23] and the Proba-
bilistic Roadmap Method (PRM) [24] are the two most common
methods. In [25], they utilized a variable step RRT that is capable
of automatically adjusting the step size, eliminating the necessity
of tuning the step size for different environments. Based on the
Bi-directional RRT, [26] considered the kinematic constraints
in the planning process and used an efficient pruning strategy
to obtain kinematically connected smooth paths. Although these
planners have probabilistic completeness, it is difficult to find the
optimal solution in an unstructured environment. The principle
of APF is to generate the repulsive potential field to the obstacle
and the attractive potential field to the goal, which makes the
mobile robot avoid collision with the obstacle while moving
toward the goal [10]. However, it tends to fall into local minima
in the gradient descent process [27]. Although the methods
mentioned above can effectively avoid obstacles in low-speed
and low-complexity scenarios, the trajectories are typically more
aggressive when approaching the obstacles, which results in a gi-
ant swing of the vehicle. More complex and predictable behavior
can be achieved by applying the optimal control methods, and
our approach relies on Model Predictive Control (MPC) [28].
MPC can obtain collision-free and kinematically-feasible trajec-
tories by incorporating the dynamical constraints of automated
vehicles and the predicted behavior of obstacles. Meanwhile,
researchers also prefer to use MPC for path tracking control
with the improvement of computer performance [29], [30]. In
contrast, we integrate trajectory planning and tracking control
into one module and use MPC for both trajectory planning and
control in complex dynamic environments.

MPC relies heavily on a suitable and accurate representation
of the system dynamics model. However, in unstructured envi-
ronments, the complicated interactions between tires and roads
make it hard to model vehicle dynamics accurately. To improve
model accuracy, learning-based MPC is generally considered to
have great potential as it can predict the system more accurately
by seeking to estimate the uncertainty of dynamics in the mea-
sured data [31]. GP-based MPC (GP-MPC), one of the most
popular methods in learning-based MPC, provides a flexible
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Fig. 1. System framework for AVs.

stochastic nonparametric approach that has been validated in
a large number of works [32]–[34]. In [32], [33], they applied
GP-MPC to a small high-speed racing car. The GP learns the
dynamics of unknown systems from the race car’s historical
data, which significantly improves the control performance and
increases the average speed. [34] utilized GP to achieve optimal
control of the mobile robot in off-road terrain, and the controller
also achieved high performance and optimal control when the
GP reduced the model uncertainty. In this work, we integrated
GP-MPC into a trajectory planning and tracking control frame-
work and implemented it on our automated vehicle.

The main contributions of this study can be summarized as
follows:
� A practical approach for constructing a hierarchical risk

map in unstructured, dynamic environments is proposed
to map road risk and obstacle risk, providing helpful prior
knowledge for trajectory planning.

� Gaussian process regression is utilized to identify the resid-
ual model uncertainty from the vehicle’s historical data
to correct the vehicle dynamics and improve the model
accuracy.

� The method is successfully implemented on our automated
vehicle, and the effectiveness of obstacle avoidance is fully
verified in an unstructured dynamic environment.

III. SYSTEM FRAMEWORK OVERVIEW

Due to the lack of prior knowledge of roads such as lane
lines and stop lines in unstructured roads and the challenges of
rough ground and uncertainty of obstacle locations, the frame-
work of motion planning in urban environments is no longer
applicable to unstructured environments. By fully considering
the characteristics in an unstructured environment, the system
framework, depicted in Fig. 1, has three modules: (i) a mapping
module that takes into account the uncertainty features in the
environment, (ii) a planning module, which constantly calculates
the safe and kinematically-feasible trajectory and the optimal
control commands, and (iii) a framework manager that handles
cooperation between the various modules. In addition, the sys-
tem framework also contains the following modules: the global
planner, perception system, localization system, and low-level
actuator control. The system takes the planning framework as the
core, and communication between modules is based on a par-
ticular publish/subscribe messaging protocol for Inter-Process
Communication.

The perception system receives and processes the raw 3D
point cloud information from the sensors and uses a specific

Fig. 2. Illustration of perception and localization systems in unstructured
environments. (a) 3D point cloud and 2D occupancy grid map. (b) Aerial view
and 2D drivable map.

Fig. 3. Illustration of two layers of risk map.

ground segmentation algorithm combined with Simultaneous
Localization and Mapping (SLAM) to obtain an occupancy grid
map. Finally, the drivable area can be easily extracted based
on the current location and the global reference trajectory. The
image on the left of Fig. 2(a) is the global 3D point cloud, while
the right is the global occupancy grid generated by SLAM. Three
common scenarios were selected to demonstrate the validity of
the drivable area: Location A with a magenta circle is a wide
straight road. At the same time, B is a narrow road and C is a
curved road. As shown in Fig. 2(b), the drivable area obtained
from the perception system can accurately represent the current
driving scenarios.

IV. RISK MAP CONSTRUCTION

The main focus of this section is the mapping module, intend-
ing to construct a risk map in an unstructured environment by
evaluating the drivable area and obstacles. The risk map, which
mainly contains the location and risk of obstacles, can provide
reliable prior knowledge for the planning module. However, the
dynamic changes of environment bring considerable challenges
to risk map construction.
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Fig. 4. The extraction results of road center baseline. (a),(b),(c) correspond to
the real-time extraction results of the road center baseline at locations A, B, C
in Fig. 2.

To accurately express the risk map, as depicted in Fig. 3, the
risk map is divided into two layers: static layer and dynamic
layer. The static layer mainly describes the driving cost of the
drivable area in the unstructured road. In contrast, the dynamic
layer mainly describes the uncertainty cost generated by the
static obstacles in the drivable area and the risk generated by the
future movement trend of the dynamic obstacles. Consider the
risk map G ⊂ RN , with grids in G denoted g, and the grid in
row i and column j has a risk cost RC(i,j), which consists of
static risk cost RC(i,j)

static and dynamic risk cost RC(i,j)
dynamic.

A. Road Risk Construction

The edge of an unstructured road is often rough with many
obstacles, which poses a potential danger to vehicle safety and
stability. However, the central area of the road is typically flat
with few obstacles. Therefore, driving close to the road center
baseline is an ideal way to ensure safety. In this way, a potential
field with low risk in the center and high risk on both sides can
be used to represent the road risk. This section first extracts the
road center baseline of the drivable area shown in Fig. 2, and
then generates the road risk based on the road center baseline.

1) Road Center Baseline Generation: As depicted in Fig. 2,
the drivable area has different shapes under different road scenes,
which poses a significant challenge to the construction of road
risk. To represent the characteristics of the different drivable
areas, we extract the road center baseline from the drivable areas
by General Regression Neural Network (GRNN). The results
are shown as the red curve in the blue area in Fig. 4, which
clearly shows that the road center baseline extracted by GRNN
in different scenes can accurately represent the geometry of the
road.

2) Road Risk: To keep the ego vehicle within the drivable
area, a danger threshold dth against the road edge is defined to
distinguish the danger from outside the road. The grid is usually
considered safe when it is farther than dth from the edge of
the drivable area, and the set of all grids is denoted as B. The
risk within B is denoted as U and is represented by a carefully
modified Gaussian function, which models each cross-section
of the road sequentially. First, the standard Gaussian function
is applied to the grids on both sides of the road, with the road
center baseline as the mean. Then the results after adjusting the

Fig. 5. Illustration of road risk.

weights are taken as negative, presenting a shape of low middle
and high sides. Finally, the risk is adjusted to an appropriate
value by the parameter λr, resulting in

U = λr − αr exp
(
− (g − xnear)

T Σ−1
road (g − xnear)

)
(1)

where xnear represents the nearest point to g on the road center
baseline, λr and αr are weighting parameters.

Within the danger threshold (g /∈ B), we employ a similar
form of the repulsive potential, and the road risk RCroad is
given by Eq. (2).

RCroad =

{
U g ∈ B

βr

[ηr(g−xedge,j)]
2+1

+ τr g /∈ B (2)

where βr is a scaling factor to adjust the maximum cost, ηr is
the weight factor for adjusting the change rate of the boundary
cost, and τr represents the cost adjustment parameter. xedge,j is
the jth road edge coordinate, j ∈ {1, 2}. Fig. 5 illustrates the
results of the road risk construction.

B. Static Obstacles Risk Construction

It is assumed that the perception system can acquire the
location of obstacles in real-time, and the tracking module can
accurately track each obstacle and output in real-time. In this
work, the locations of the obstacles are represented in the SL
coordinate system. The coordinates in the SL coordinate system
are composed of station S (distance along the global path) and
lateral coordinate L (distance of a point from the global path,
perpendicular to the global path). We consider that the drivable
area consists of a set of N obstacles {O1,O2, . . . ,ON}. For
Oi, the real location and the measurements obtained by the
sensors are denoted as xi and zi, respectively. Assuming that
xi is a Gaussian process (GP) with known variance and the
mean of the GP is the exact value of the obstacle location, i.e.
xi ∼ N (xi0,Σ

i
0). Considering the uncertainties of the sensor, we

presume that the sensor’s noiseε follows a Gaussian distribution,
i.e. ε ∼ N (0,ΣR).

For obstacle Oi, the streamline output
{zit−K+1, z

i
t−K+2, . . . , z

i
t} of the tracking module from time

t−K + 1 to time t, which we define as zit−K+1:t. Based on the
outputs of the previous K steps, the posterior distribution of Oi

at time t is defined asP (xi|zit−K+1:t), which follows a Gaussian
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Fig. 6. (a) Risk generated by static obstacles with initial belief. (b) Risk
generated by static obstacles after 50-step update.

distribution, i.e. P (xi|zit−K+1:t) ∝ N (xit,Σ
i
t). x

i
t and Σit can

be calculated by Bayesian inference, and the specific derivation
procedure is available in [16]. In addition, the transfer between
states is assumed to follow a Markov process, the online update
process for xit and Σit is given by

xit =
((

Σit−1

)−1
+
(
ΣiR
)−1
)−1 ((

Σit−1

)−1
xit−1 +Σ−1

R z
i
t

)
(3a)

Σit =
((

Σit−1

)−1
+
(
ΣiR
)−1
)−1

(3b)

The mean and variance of each static obstacle at the current
time can be calculated by Eq. (3), and Eq. (4) is used to generate
the risk of static obstacles. Note that for clarity, we use xsob,i
and Σsob,i to replace xit and Σit, respectively.

RCsob =

N∑
i=1

βiexp
(
− (g − xsob,i)

T Σ−1
sob,i (g − xsob,i)

)
(4)

where xsob,i = [li, si]
T , Σsob,i = diag{[σ2

l,i, σ
2
s,i]}.

Fig. 6 illustrates the risk map update process for static
obstacles.

C. Dynamic Obstacles Risk Construction

Since dynamic obstacles have high uncertainty and different
types of dynamic obstacles have different motion characteristics,
they cannot be grouped to predict their future movements. In
this paper, dynamic obstacles are divided into high-speed dy-
namic obstacles (such as cars) and low-speed dynamic obstacles
(such as pedestrians). A dynamic obstacle is considered as a
high-speed dynamic obstacle when the instantaneous velocity
of successive k frames is higher than the dynamic velocity
threshold vdyth or the average velocity is higher than vdyth . In ad-
dition, when the vision detection system successfully identified

Fig. 7. (a) The red point indicates the location of low-speed dynamic obstacle,
while the blue line indicates the velocity direction. (b) Risk generated by low-
speed dynamic obstacles.

some types of dynamic obstacles, such as motorcycles, cars, and
agricultural tractors, we also treated them as high-speed dynamic
obstacles even if their velocities were lower than vdyth because
of their potential ability to accelerate suddenly. Consequently,
other dynamic obstacles are considered as low-speed dynamic
obstacles. In this work, we use two different methods to calculate
their respective risk.

1) Low-speed Obstacles: Since the motion of low-speed dy-
namic obstacles is irregular, the corresponding risk is established
based on its real-time location and velocity in the SL coordinate
system. To simplify the calculation, we use the mean and vari-
ance update strategy of static obstacles to estimate the real-time
location of low-speed dynamic obstacles, and the velocity is
given by the tracking module, resulting in

RCldob

=

m∑
i=1

exp
(
− (g −Axldob,i)

T Σ−1
ldob,i (g −Axldob,i)

)
1 + exp

(
−λixTldob,iB (g −Axldob,i)

) (5)

where xldob,i = [li, si, vl,i, vs,i]
T , A =

[
1 0
0 1

0 0
0 0

]
, B =[

0 0
0 0

1 0
0 1

]T
, Σldob,i = diag{[σ2

l,i, σ
2
s,i]}.

Fig. 7 illustrates the mapping from locations and velocities of
low-speed obstacles to the risk map.

2) High-speed Obstacles: For high-speed dynamic obstacles,
this paper will use the LSTM (long short-term memory) neural
network to learn continuous features of historical trajectories
to obtain future prediction trajectories and then generate the
corresponding risk according to the prediction trajectories.

LSTM is a specific form of RNN (recurrent neural network)
that makes the weights of the self-loops variable by adding the
input gate, forget gate, and output gate. In this way, the scale
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Fig. 8. The internal structure of an LSTM cell.

Fig. 9. Network structure of trajectory prediction.

of integration can be changed dynamically at different moments
with fixed model parameters, thus avoiding gradient disappear-
ance or gradient expansion. The specific network structure is
shown in Fig. 8, and the following recursive equation represents
the calculation process

ft = σ (wfst + bf ) (6a)

it = σ (wist + bi) (6b)

c̃t = tanh (wcst + bc) (6c)

ct = c̃t � it + ct−1 � ft (6d)

ot = σ (wost + bo) (6e)

ht = ot � tanh (ct) (6f)

where st = [ht−1, xt], ht and xt are the output vector and the
input vector respectively, it, ft and c̃t are gate vectors, σ(·)
represents the activation function, w denotes the linear transfor-
mation matrix, b denotes the offset vector, ct denotes the amount
of cell memory.

The detailed network structure for trajectory prediction is
shown in Fig. 9, which consists of two layers containing 256
LSTM cells, one fully connected layer containing 128 neurons,
and a dense output layer containing the same number of cells as
the output vector. The network receives the historical trajectory,
velocity, acceleration, and curvature from the dynamic obstacles
and outputs the future location and velocity of the obstacles.
Since the inputs to the network are the deviations from the ref-
erence trajectory, it enables the network to learn the continuous
features of the historical trajectory. In addition, as the network
is trained with relative coordinates, it can improve data sparsity
and enhance scene adaptation.

Since the accuracy of the predicted trajectory decreases with
the predicted distance, the uncertainty will be higher where
the predicted trajectory is far from the dynamic obstacle. To
simplify the model and reduce the computational complexity, we
assumed that the variance approximately linearly varies along
the trajectory. We first define the variances of the start and end
of the trajectory based on the actual location of the dynamic

Fig. 10. Risk generated by high-speed dynamic obstacles.

obstacle and the predicted length. Then we calculate the risk
cost of each discrete predicted trajectory waypoint using Eq.(5)
based on the principle of linear variation of variance, and finally
updated the risk map based on the principle of maximum risk
cost.

We set up a prediction trajectory and generate the correspond-
ing risk by the above algorithm, as shown in Fig. 10. The blue
curve is the predicted trajectory, the green point is the start of the
predicted trajectory, while the purple point is the end. It can be
seen from the figure that the above algorithm can approximately
represent the risk of high-speed dynamic obstacles in the future.

D. Update the Risk Map

Each grid in the risk map has a corresponding risk cost
RC(i,j), combining the risk cost of road RC

(i,j)
road, static ob-

stacles RC(i,j)
sob , low-speed dynamic obstacles RC(i,j)

ldob and the

high-speed dynamic obstacles RC(i,j)
hdob. The calculation method

of RC(i,j) is then given by

RC(i,j) = λstaticRC
(i,j)
static + λdynamicRC

(i,j)
dynamic (7)

subject to

RC
(i,j)
static = RC

(i,j)
road

RC
(i,j)
dynamic = max

{
RC

(i,j)
sob , RC

(i,j)
ldob , RC

(i,j)
hdob

}
where λstatic and λdynamic are the weight parameters of road
and obstacles, respectively. i denotes the row of the risk map
while j denotes the column.

In Section IV-A-(2), we divided the drivable area into two
types of area according to the distance from the road boundary.
The area in the middle of the road (g ∈ B) is mainly used
to constrain the ego vehicle to drive close to the road cen-
ter baseline, and the corresponding cost is usually mapped to
[0, τr]. However, driving close to the road boundary (g /∈ B) is
more likely to collide with obstacles outside the road and the
area is supposed to have a higher risk cost [τr, βr + τr]. The
maximum road risk cost at the boundary should be close to
the maximum cost generated by the obstacles, indicating that
the ego vehicle should neither drive beyond the edge of the
drivable area nor collide with the obstacles. In this work, the
risk cost of obstacles is mapped to [0, 1], and the maximum
cost of road risk is determined by the parameters βr and τr.
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Fig. 11. Schematic of the vehicle model.

The relationship between λstatic and λdynamic should satisfy
λstatic(βr + τr) ≈ λdynamic in the application.

V. TRAJECTORY PLANNING

This section begins with a nominal model of the vehicle
dynamics, which is mainly based on the material presented
in [35]. A learning-based model prediction trajectory planning
controller is then established, and the road risk and obstacle risk
are added to the controller to enhance the obstacle avoidance
capability.

A. Vehicle Dynamics

We consider the following discrete-time model to describe the
dynamics of the automated vehicle.

ẋ = f(x, u) + C (g(x, u) + ω) (8)

where f is a known nominal model and g describes the unknown
dynamics. We assume that both f and g are differentiable
functions, and ω follows an independent distributed Gaussian
distribution.

A bicycle model is used to describe the nominal dynamics as
depicted in Fig. 11, resulting in

v̇x =
1
m

(
mvyψ̇ + 2Fxf + 2Fxr

)
(9a)

v̇y =
1
m

(
−mvxψ̇ + 2Fyf + 2Fyr

)
(9b)

ψ̈ =
1
Iz

(2lfFyf − 2lrFyr) (9c)

ėψ = ψ̇ − ψ̇d (9d)

ėy = vy cos (eψ) + vx sin (eψ) (9e)

ṡ = vx cos (eψ)− vy sin (eψ) (9f)

where x = [vx, vy, ψ̇, eψ, ey, s]
T is the state of the system. vx

and vy denote the longitudinal and lateral velocity. ψ̇ is the yaw
rate around the vehicle’s center of gravity (CoG). eψ and ey are
the deviation error from the desired path of vehicle’s orientation
and lateral position, respectively. s is the longitudinal position
along the desired path. ψd denote the angle of the tangent of
the desired path in the fixed coordinate frame. lr and lf are
the distance from the CoG to the front and the rear axles,
respectively. m and Iz are the vehicle’s mass and the vehicle’s

momentum of inertia around its vertical axis.Fxf andFxr denote
the total longitudinal forces of the front and rear tires, while Fyf
andFyr represent the lateral forces of the front and rear tires. The
tires are modeled by a simplified Pacejka tire model [36], and
in this paper, the exact tire model is referred to [35]. From [35],
the longitudinal tire forces are linear with the braking/throttle
ratio α under the assumption of a small tire slip angle, where
α = 1 represents maximum throttle, while α = −1 represents
maximum braking. In addition, we assume that only the steering
angle of the front wheels can be controlled and both front wheels
have the same steering angle. i.e., δ1 = δ2 = δ and δ3 = δ4 = 0.
We take α and δ as the control inputs, resulting in: u = [α, δ]T .

This model is discretized with a fixed sampling time Ts by
Euler forward scheme to be utilized as the discrete-time MPC
formulation.

x (k + 1) = f (x(k), u(k)) + C (g (x(k), u(k)) + ω(k))
(10)

where x(k) ∈ Rnx is the state and u(k) ∈ Rnu is the input to
the system at time step k ∈ N, f : Rnx × Rnu → Rnx is the
nominal model, ω(k) ∼ N (0,Σω) is Gaussian white noise with
zero mean and variance Σω .

B. Gaussian Process Regression

Due to AVs needs high real-time performance, the nominal
system model is simplified to reduce the complexity of the
system. Although the nominal system model is sufficient for
the operation of AVs, to achieve higher performance, we use a
learning-based method to identify the residual model uncertainty
so as to improve the performance and enable the automatic model
adaptation.

In the following, we will use GP regression [37] to infer the
unknown function g(x, u) based on a training set of previously
collected measurements of states xi and inputs ui. In this paper,
we will use the following notations to describe the current data
set as

D=
{
Z=[z1, . . . , zm]T ∈ Rm×nz ,y=[y1, . . . , ym]T ∈ Rm×np

}

where zi = [xi;ui], nz = nx + nu, and we identify an un-
known function g : Rnz → Rnp from the current data set D

yi = C† (xi+1 − f (xi, ui)) = g (zi) + ωi (11)

where C† is the Moore-Penrose pseudo-inverse, and ωi is
the Gaussian white noise corresponds to the process noise
in Eq.(10) with zero mean and diagonal variance Σω =
diag([σ2

1 , . . . , σ
2
np
]).

In this paper, we assume that each output dimension p ∈
{1, . . . , np} is learned individually from Z, and the GP can
be written as

[y]·,p ∼ N (0,K (Z,Z)) (12)

where [y]·,i is the ith column of matrix y, K(Z,Z) is the
Gram matrix using a kernel function k(·, ·) on the input Z, i.e.
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[K(Z,Z)]i,j = k(zi, zj). We use the popular squared exponen-
tial kernel throughout this paper

k (zi, zj) = σ2
f exp

(
−1

2
(zi − zj)

T Λ−1 (zi − zj)

)
(13)

where σ2
f is the signal variance and Λ ∈ Rnz×nz is a positive

diagonal length scale matrix.
With the combination of the data set D and the test input z∗,

we can get the joint distribution in output dimension p as[
[y]·,p
[y∗]p

]
∼ N

(
0,
[
K (Z,Z) + σ2

pI K (Z, z∗)
K (z∗,Z) K (z∗, z∗)

])
(14)

where y∗ is the predicted output, [K(Z, z∗)]i = k(zi, z
∗),

K(z∗,Z) = [K(Z, z∗)]T , K(z∗, z∗) = k(z∗, z∗).
Given the training data D and the conditional distribution

[y∗]p
∣∣∣Z, [y]·,p , z∗ ∼ N (

mr
p(z),Σ

r
p(z)

)
(15)

where

mr
p(z) = K (z∗,Z)

(
K (Z,Z) + σ2

pI
)−1

[y]·,p (16a)

Σrp(z) = K (z∗, z∗)

−K (z∗,Z)
(
K (Z,Z) + σ2

pI
)−1

K (Z, z∗) (16b)

Combining the individual output dimensions and the resulting
multivariate GP approximation of g(z) is given by

r(z) ∼ N (mr(z),Σr(z)) (17)

where mr(z) = [mr
1(z); · · · ;mr

np
(z)], Σr(z) =

diag([Σr1(z); · · · ; Σrnp
(z)]).

The hyper-parameters θ = (σ2
f ,Λ, σ

2
p) are critical in model

estimation, and in this paper, the hyper-parameters of the GP
model are learned by maximizing the log-likelihood function
given by

log p
(
[y]·,p |Z, θ

)
= −1

2
[y]T·,p

(
K (Z,Z) + σ2

pI
)−1

[y]·,p

− 1
2
log
∣∣K (Z,Z) + σ2

pI
∣∣− m

2
log (2π)

(18)
It is a nonlinear non-convex optimization problem that we can

use some nonlinear solvers to minimize the value subject to the
hyper-parameters, such as conjugate gradient (CG). In addition,
the hyperparameters using maximum likelihood optimization
before operation based on the historical data and fix them online
during the driving.

θ∗ = argmin
(
− log p

(
[y]·,p |Z, θ

))
(19)

C. Sparse Approximations

Due to the high computational complexity of GP when dealing
with large-scale data, sparse GPs (SPGP) algorithms, in this
work, will be utilized to relieve the computational complexity,
and we will use the popular sparse approximation approaches
Fully Independent Training Conditional (FITC) [38]. Given a set
of n(n
 m) inducing inputs Zind = [z1, . . . , zn]

T and using

a shorthand notation

Q (A,B) � K (A,Zind)K (Zind, Zind)K (Zind, B)

the approximate posterior distribution is given by

mSP
p (z) = K (z∗,Zind)Γ (20a)

ΣSPp (z) = K (z∗, z∗)

−Q (z∗, z∗) +K (z∗,Zind) ΩK (Zind, z
∗) (20b)

To decrease the computational complexity, Γ and Ω will be
calculated offline as

Ω =
[
K (Zind,Zind) +K (Zind,Z)Θ−1K (Z,Zind)

]−1

(21a)

Θ = diag
[
K (Z,Z)−Q (Z,Z) + σ2

pI
]

(21b)

Γ = ΩK (Zind,Z)Θ−1 [y].,p (21c)

Combining the individual output dimensions, similar to
Eq.(17), the sparse GP approximation is given by

rSP (z) ∼ N (
mSP (z),ΣSP (z)

)
(22)

with mSP (z) = [mSP
1 (z); · · · ;mSP

np
(z)], ΣSP (z) =

diag([ΣSP1 (z); · · · ; ΣSPnp
(z)]).

D. Model Learning

Given the nominal model f(xk, uk) presented in Eq.(9), we
use GP to derive the unknown function g(zk) of the system from
the previously collected system state and input data. The training
data yk for learning the GP model is created by the error between
the nominal model predictions and measurements

yk = g (zk) + ωk = C† (xk+1 − f (xk, uk)) (23)

where zk = [xk;uk] ∈ Rnz .
It is assumed that only the states vx, vy and ψ̇ are influenced

by the uncertainty and noise, while the remaining three states
are calculated by kinematic relations. In this paper, we will use
the GP function r(zk) to estimate the unknown function g(zk),
and result in the following stochastic model

xk+1 = f (xk, uk) + C (r (zk) + ωk) (24)

where C = [03×3; I3×3].
GP is typically accurate in one-step predictions, but we have

to use the stochastic output as input in the next prediction when
predicting forward over the MPC prediction horizon, which
introduces uncertainty into the discrete-time system. Therefore,
the predicted states are stochastic variables, and we assumed
that they follow the Gaussian distributions at each step, i.e.
xk ∼ N (μ

(x)
k ,Σ

(x)
k ). It is assumed that the vehicle state and

the residual model uncertainty are jointly Gaussian distributed
at each iteration[

xk
rk

]
∼ N (μk,Σk)

= N
([

μ
(x)
k

mr
k (zk)

]
,

[
Σ

(x)
k S

∇xm
r
k (zk) Σ

(x)
k Σrk

])
(25)
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Fig. 12. Circle decomposition of the vehicle shape and localization of the
vehicle with a given desired path.

where S denotes the corresponding elements by symmetry.
To evaluate the posterior of a GP with Gaussian input, the

mean and variance will be calculated by applying the prediction
step of the Extended Kalman Filter (EKF) [32]. This results in
predicted mean μ(x)

k+1 and variance Σ
(x)
k+1 given by

μ
(x)
k+1 = f

(
μ
(x)
k , uk

)
+ Cmr

k (zk) (26a)

Σ
(x)
k+1 =

[
∇xf

(
μ
(x)
k , uk

)
C
]
Σk

[
∇xf

(
μ
(x)
k , uk

)
C
]T
(26b)

E. Application of Risk Map

The risk of ego vehicle is mainly associated with the occu-
pancy grid by its geometric shape in the risk map. For reducing
the computational complexity, we use the geometric shape com-
posed of three circles to replace the real geometric shape of the
vehicle, as depicted in Fig. 12.

According to the orientation deviation eψ and lateral deviation
ey of the ego vehicle from the desired path, we can easily get
the specific location of the ego vehicle. As shown in Fig. 12, we
make use of the center of the rear axle, the CoG, and the center
of the front axle to make three circles with equal radius, and use
these three circles to approximate the geometric shape of the ego
vehicle. The distances between the centers of the three circles
and the desired path are approximately given by the following
formula

e1 = ey − lr sin (eψ) (27a)

e2 = ey (27b)

e3 = ey + lf sin (eψ) (27c)

where lr and lf are the distance from the CoG to the front and
the rear axles, respectively.

In this way, the geometric shape of the whole vehicle can be
determined uniquely at each step, and the occupancy grid set
Vk of the ego vehicle at each sampling time k can be easily
obtained. We take the highest cost Ck as the risk cost of the ego
vehicle at step k

Ck = max
(
RC

(i,j)
k

)
, (i, j) ∈ Vk (28)

where Vk ∈ Rm×2, m is the number of occupancy grids at step
k.

F. Constraints Formulation

1) Chance constraints: The system is subject to state con-
straints X ∈ Rnx , and input constraints U ∈ Rnu with the fol-
lowing form

X = x ∈ {Rnx |Hxx ≤ bx } (29a)

U = u ∈ {Rnu |Huu ≤ bu } (29b)

Due to the random disturbance in the process, the constraints
x ∈ X , u ∈ U may not be satisfied and we convert it to chance
constraints

Pr (xk ∈ X ) ≥ 1 − εx (30a)

Pr (uk ∈ U) ≥ 1 − εu (30b)

where εx and εu are the probability of violation.
2) Safety constraints:
i) Risk boundary constraints: Fig. 12 shows that different

vehicle postures can be obtained by expanding to both sides
along the vertical direction of the desired path. At each predicted
position, the lateral safety area of the ego vehicle can be obtained
by restricting the vehicle body within the road risk area, and
combining Eq. (27), the following risk boundary constraints are
given by

ei,min ≤ ei ≤ ei,max i = 1, 2, 3 (31)

ii) Slip constraints: as the tire forces are linearized when
modeling, the slip angle needs to be limited to the linear region
of the tire forces.

αslipmin < αslipf < αslipmax (32a)

αslipmin < αslipr < αslipmax (32b)

where αslipf and αslipr are the front tire slip angle and rear tire
slip angle, respectively.

To increase the chance of finding the solution of the optimal
control problem, we use the slack variables ε to relax the
risk boundary constraints and the slip constraints. In this way,
Eq.(31) and Eq.(32) can be written in shorthand as

g
(
μ(x), u

)
≤ ε (33)

where ε indicates that a partial violation is allowed.

G. GP-MPC Formulation

By minimizing the expected value of a Gaussian distributed
quadratic function, we define a stochastic MPC problem over a
finite receding horizon. The resulting optimization problem can
then be formulated as

minimize
Δu,ε

Np−1∑
k=0

λCt+k,t +
∥∥∥μ(x)

t+k,t − xreft+k,t

∥∥∥2

Q
+ ‖ut+k,t‖2

R

+ ‖Δut+k,t‖2
S + βT εk (34)
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TABLE I
VEHICLE PARAMETERS

s.t.

μ
(x)
t+k+1,t = f(
μ
(x)
t+k,t, ut+k,t

)
+ Cmr

t+k,t, k = 0, 1, . . . , Np − 1

Pr
(
μ
(x)
t+k,t ∈ X

)
≥ 1 − εx, k = 0, 1, . . . , Np − 1

Pr (ut+k,t ∈ U) ≥ 1 − εu, k = 0, 1, . . . , Nc − 1

g
(
μ
(x)
t+k,t, ut+k,t

)
≤ εk, k = 0, 1, . . . , Np − 1

Δut+k,t = ut+k,t − ut+k−1,t

Δumin ≤ Δut+k,t ≤ Δumax, k = 0, 1, . . . , Nc − 1

Δut+k,t = 0, k = Nc, . . . , Np

ut−1,t = u (t− 1)

μ
(x)
t,t = μ(x)(t) (35)

where t denotes the current time instant and t+ k, t index
denotes the predicted value at k steps ahead of t.Np andNc are
the prediction horizon and control horizon. Δumin and Δumax

are the lower and upper bounds of the control inputs changes.
In equation (32), the first term Ct+k,t is the risk cost and λ is
the weight; The second term is the quadratic cost on the state
tracking error, i.e., ‖A−B‖2

Q � (A−B)TQ(A−B), and Q
is the weighting matrices. Similarly, the third and fourth terms
are the quadratic cost on the control inputs and their changes,
and R, S are the corresponding weight matrices. The last term
εk is the slack variables and β is the weight.

VI. SIMULATION RESULTS

In this section, the effectiveness of the risk map and the
comparison between GP-MPC and nominal MPC are tested in
the simulation environment. The algorithms are implemented in
MATLAB, while the highly reliable full-vehicle dynamics are
given by Carsim. The nonlinear optimization problem in MPC
controllers is solved by the open-source toolbox CasADi [39],
and the main parameters in the simulation environment are listed
in Tables I and II.

A. Effectiveness of Risk Map

In this section, we will verify the effectiveness of the risk
map in improving the performance of trajectory planning. For
comparison, we set up two MPC planners: one considers risk
constraints, and the other does not. Except for risk constraints,

TABLE II
DESIGN PARAMETERS

TABLE III
REAL-TIME DESIGN PARAMETERS

Fig. 13. Experimental results for low-speed dynamic obstacles avoidance.(a)
Bird’s eye view of the AVs. (b) The longitudinal velocity of MPC planning with
risk constraints.

the two planners are equipped with the same parameters. We
set up two scenarios for the two planners to test the obstacle
avoidance capability and the corresponding simulation results
are shown in Figs. 13 and 14.

1) Obstacle Avoidance in Scenario 1: As shown in Fig. 13, in
this scenario, the starting location of the ego vehicle is located at
the red point, and two low-speed dynamic obstacles crossing the
road are in front of the vehicle. The MPC planner that ignored
risk constraints treated all obstacles as static obstacles and
planned a convenient path for controller execution. However, it
increased the probability of collision with obstacles. Instead, the
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Fig. 14. Experimental results for both static and high-speed dynamic obstacles
avoidance. (a) Bird’s eye view of the AVs. (b) The longitudinal velocity of MPC
planning with risk constraints.

planner considering the risk constraints can consider the future
movement trend of the obstacles, thereby obtaining a safe and
feasible path.

2) Obstacle Avoidance in Scenario 2: As shown in Fig. 14,
there is a high-speed dynamic vehicle at the left front side of
the ego vehicle preparing to turn left. Its predicted trajectory
forms a risk field in the risk map, which poses a vital challenge
to the MPC planner. Similar to the previous scenario, the path
generated by the MPC planner without considering risk con-
straints is close to the dynamic obstacles, and the only way to
avoid a collision in the future is through emergency avoidance or
emergency deceleration, which is undoubtedly failed planning.
In contrast, the planner considering risk constraints can consider
the future movement trend of the dynamic vehicle, thus planning
a safe path.

Through the simulation experiments of the above two scenar-
ios, in an uncertain environment, combining the MPC planner
with risk constraints can significantly improve scene adaptability
and driving safety.

B. GP-MPC Validation

1) Verification of GP Prediction: To demonstrate the effective-
ness of learning uncertain disturbances with GP, a path tracking
experiment along a curvy reference path is tested in the road
course shown in Fig. 16. In the process of tracking, the vehicle
state, control input and real prediction errors at each sampling
time are taken as the training data of the GP model. Through
the real-time updated GP model, the mean and variance of the
prediction error at each time step can be obtained. Fig. 15 shows
the actual error and GP prediction error of vx, vy and ψ̇ in the
simulation, and the results show that the real model errors can
be well fitted by the mean and uncertainty estimate of GP.

Fig. 15. Recorded model error and GP error prediction during a lap. (a)
Prediction error in vx. (b) Prediction error in vy . (c) Prediction error in ψ̇.
The black dots are the model error under process noise. The blue line is the
mean predicted model error while the light blue is the 2σ confidence interval.

Fig. 16. The driven trajectory between nominal MPC and GP-MPC with same
configuration during a lap.

Fig. 17. The longitudinal velocity vx and lateral velocity vy between nominal
MPC and GP-MPC with same configuration during a lap.

2) Verification of GP-MPC Controller: To demonstrate the
learning performance, we used the GP-MPC controller and the
nominal MPC controller to perform a path tracking experiment
in the road course, illustrated in Fig. 16. The experimental results
show that the GP-MPC controller performs better than the nomi-
nal MPC controller in sharp-turning scenarios. Fig. 17(a) shows
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Fig. 18. The prediction 2-norm error between nominal MPC and GP-MPC
during a lap.

Fig. 19. Our automated vehicle test platform.

that the GP-MPC controller has higher and more stable lon-
gitudinal velocity than the nominal MPC controller. Fig. 17(b)
shows that the lateral velocity of the GP-MPC controller changes
more smoothly in the curve. To quantify the performance of the
GP-MPC controller, we compare the 2-norm error ‖emodel‖,
i.e., ‖emodel‖ = ‖x(k + 1)− f(xk, uk)‖ of the two controllers
in the system dynamics at each time step, and the results are
shown in Fig. 18.

Through the above experiments, it can be clearly observed that
the GP-MPC controller improves the accuracy of the dynamic
model and has a better performance by learning the model
prediction error online.

VII. EXPERIMENT RESULTS

A. Experimental Platform

To verify the effectiveness of the algorithm in real unstruc-
tured environments, we use a modified 4WD car as an experi-
mental platform. As shown in Fig. 19, the ego vehicle is equipped
with the necessary sensors for automated driving, including an
IBEO four-layer laser scan instrument, a Velodyne HDL-64E li-
dar, two Velodyne HDL-32E lidar, four high-resolution cameras,
and a differential GPS/INS system. The onboard computer is
equipped with an Intel i7 2.2 GHz processor and 16 GB of DDR4
2400 MHz memory. We use the Ubuntu 16.04 LTS system with
ROS Kinetic as the development and operation environment.

B. Parameter Evaluation

To evaluate the performance of the controller, several experi-
ments have been performed under a double lane change maneu-
ver with different sampling times, Ts ∈ {0.05 s, 0.1 s, 0.15 s},

Fig. 20. Comparison of experimental results and computation time for dif-
ferent sampling times. The prediction and control horizons are Np = 30 and
Nc = 10, respectively, and the initial velocity is 20 m/s. (a) Comparison of path
tracking results. (b) Comparison of computation time. The red line in the box plot
represents the median. The computation time for the 75th and 25th percentiles
are represented by the top and bottom edges of the box, respectively. The red
crosses denotes the outliers.

Fig. 21. Comparison of experimental results for different prediction horizons.
The control horizon is Nc = 10, sampling time is Ts = 0.1 s, and the initial
velocity is 20 m/s. (a) Comparison of lateral error. (b) Comparison of heading
error.

prediction horizons, Np ∈ {10, 20, 30, 40}, and control hori-
zons, Nc ∈ {5, 10, 20}.

As shown in Fig. 20(a), the shorter sampling time Ts results in
smaller trajectory tracking error and better control performance.
However, Fig. 20(b) shows that smaller sampling times lead to
higher computation times for the controller. When Ts is 0.05 s,
the average computation time is close to the cycle time of the
controller with a few isolated moments exceeding 0.05 s. There-
fore the sampling time should take into account the trade-off
between computational efficiency and control performance, and
in this work the sampling time was chosen to be Ts = 0.1 s.

The prediction horizon Np has a significant effect on the
performance of controller, and when a longerNp is chosen, more
information on the future vehicle dynamics can be obtained to
predict longer distances. Fig. 21 shows that when Np is in the
range of [10, 30], both the lateral error and heading angle error
decrease as the prediction horizonNp increases. However, when
Np is 40, the control performance begins to degrade compared
to Np = 30. Consequently, both the large and small prediction
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Fig. 22. Comparison of experimental results and computation time for dif-
ferent control horizons. The prediction horizon is Np = 30, sampling time is
Ts = 0.1 s, and the initial velocity is 15 m/s. (a) Comparison of lateral error.
(b) Comparison of computation time.

Fig. 23. Satellite view of the off-road course by Google Earth.

horizons will degrade the control performance, and in this work
we choose Np = 30.

Generally, the relationshipNc � Np needs to be satisfied be-
tween the prediction horizonNp and control horizonNc. Fig. 22
shows that small control horizon (Nc = 5) fails to achieve good
control performance, and a longer Nc can improve the tracking
accuracy. However, when Nc is increases to a certain range, it
will have little improvement on the control performance and will
incur considerable computational cost. In this study, we choose
Nc = 10.

C. Trajectory Prediction

To get an accurate trajectory prediction model, we collect
a large amount of driving data in a real off-road environment
to train our trajectory prediction model. As shown in Fig. 23,
the off-road driving dataset was collected at a test site of larger
than 5 square kilometers. Due to different drivers having dif-
ferent driving styles, we use more than ten drivers to complete
the dataset to make it contain different driving behaviors. The
dataset contains more than 3000 trajectories, with an average
length of approximately 30 - 50 m.

To verify the effectiveness of the trajectory prediction algo-
rithm, we performed an experiment to predict the future motion
trajectory of dynamic vehicles before an intersection, as shown
in Fig. 24(b). For dynamic vehicles in this scenario, there will be
different driving behaviors in the future for different historical
trajectories, such as slowing down to turn left (Fig. 24(c)) or
driving straight at a uniform velocity (Fig. 24(d)). The future
trajectory of the dynamic vehicle is predicted by the LSTM

Fig. 24. The prediction results of different historical trajectories for high-speed
vehicles in the same scenario.

network, and the results are shown in Fig. 24(a) and Fig. 24(e).
The blue rectangle in the figure represents the dynamic vehicle,
the red curve is the predicted future trajectory of the dynamic
vehicle, and the colored curve is the historical trajectory of the
dynamic vehicle while the change of color indicates the change
of its historical velocity.

From the historical trajectory in Fig. 24(a), it can be clearly
observed that the speed of the dynamic vehicle slowly decreased
before the intersection. Combined with the location and curva-
ture of the historical trajectory, a predicted left-turn trajectory at
the intersection was obtained by the LSTM network. In contrast,
as shown in Fig. 24(c), the dynamic vehicle moved forward at a
high uniform speed before the intersection, and the correspond-
ing predicted trajectory is moving straight ahead. The actual
driving behaviors of the dynamic vehicle at the intersection are
shown in Fig. 24(c) and Fig. 24(d). Compared with the predicted
results, it can be seen that the outputs of the LSTM network
match the actual results, which can effectively predict the future
motion trend of the dynamic vehicles.

D. Verifications of Collision Avoidance

To validate the proposed trajectory planning algorithm, field
tests were carried out on our automated vehicle platform in
an unstructured environment. The nominal model is discretized
with a Runge-Kutta 4th-order integration using a sampling time
of Ts = 100ms. The core algorithm is implemented in C++,
and ROS is used for communication. In addition, we use the
HPIPM solver in the open-source Control Toolbox (CT) [40]
to improve the solving efficiency. To comprehensively evaluate
the reliability of the proposed method, the following three test
scenarios are defined in an off-road environment.

1) Scenario 1: The ego vehicle is moving forward at an initial
speed of 20 km/h. There are static obstacles on the left and right
sides of the road ahead. This scenario is intended to validate
the effectiveness of static obstacle avoidance for the trajectory
planning controller in unstructured environments.

2) Scenario 2: The ego vehicle is moving forward at an
initial speed of 21 km/h. The obstacles are composed of static
obstacles on the left and a slow-moving pedestrian on the right.
This scenario is intended to validate the avoidance effect for
both static and low-speed dynamic obstacles in unstructured
environments.
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Fig. 25. Scenario 1: The snapshots of the local trajectory generation scenario
for static obstacles avoidance at three consecutive instants of time.

Fig. 26. Experimental results in scenario 1: (a) Longitudinal velocity vx and
lateral velocity vy . (b) Braking/throttle ratio α and steering angle δ.

3) Scenario 3: The ego vehicle is moving forward at an initial
speed of 29 km/h. There are three static obstacles on the right
side of the road ahead, and on the left side is a dynamic vehicle
moving at high speed. This scenario is intended to test the
trajectory prediction results of high-speed dynamic obstacles
and the planning effect of the trajectory planning controller in
complex scenarios.

The above three typical scenarios are chosen to verify the
capability of the proposed trajectory planning controller for real-
time obstacle avoidance in unstructured environments. Figs. 25,
27 and 29 show three consecutive snapshots of the real-time
planning results, where (a-c) are images collected by the onboard
cameras and (d-f) are the corresponding real-time local planning
maps. We use an occupancy grid map with a resolution of
10 cm× 10 cm to represent the local environment. The grid
with red and light blue are static obstacles outside the road.
The blue area is the drivable area extracted by the perception
system. The colored grids in the drivable area correspond to the
obstacles in the image, and the color of the grid represents the
corresponding risk value. The black curve is the global reference
path, while the red curve is the local planning trajectory. The

Fig. 27. Scenario 2: The snapshots of the local trajectory generation scenario
while interacting with both static and low-speed dynamic obstacles at three
consecutive instants of time.

Fig. 28. Experimental results in scenario 2: (a) Longitudinal velocity vx and
lateral velocity vy . (b) Braking/throttle ratio α and steering angle δ.

Fig. 29. Scenario 3: The snapshots of the local trajectory generation scenario
while interacting with both static and high-speed dynamic obstacles at three
consecutive instants of time.
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Fig. 30. Experimental results in scenario 3: (a) Longitudinal velocity vx and
lateral velocity vy . (b) Braking/throttle ratio α and steering angle δ.

Fig. 31. Computational time at each time step in the experiments.

experimental longitudinal velocity, lateral velocity, and control
inputs are shown in Figs. 26, 28, and 30.

Fig. 25 demonstrates the ability of the automated vehicle to
safely and continuously avoid static obstacles, while Fig. 27
shows the safety avoidance effect on both static and low-speed
dynamic obstacles. It can be seen from the results of Figs. 26 and
28 that the ego vehicle can promptly decrease the longitudinal
velocity during the obstacle avoidance process, and accelerate
again by increasing the throttle-braking ratio α when leaving
obstacles, and maintain a small lateral velocity by steering in
small increments. As seen in Figs. 29 and 30, the automated
vehicle is still able to avoid static and high-speed dynamic
obstacles safely and successfully return to the reference path.
Fig. 31 shows the computational time at each time step in the
experiments. The average computation time is 37.78 ms and
the maximum is 42.51 ms, both of which are lower than the
controller’s cycle time of 100 ms.

VIII. CONCLUSION AND FUTURE WORK

This paper has developed and evaluated a learning-based
model predictive trajectory planning controller for automated
driving in unstructured, dynamic environments with obstacle
avoidance. First, a hierarchical risk map is designed to assess
the risk of roads and different types of obstacles for the un-
certainties arising from unstructured environments. A reliable
LSTM network is employed to predict the future trajectories of
high-speed dynamic obstacles. Second, trajectory planning and
tracking control are integrated into one module with GP learning
the nonlinear residual model uncertainty, and collision-free and
kinematically-feasible local trajectories are quickly obtained

by the constrained optimization techniques. The simulations
demonstrate the effectiveness of the risk map in trajectory plan-
ning and the feasibility of GP in reducing the model uncertainty.
The framework has been implemented on our automated vehicle,
and successful experimental results in real unstructured roads
have demonstrated that the approach can effectively address
various complex scenarios.

Although the strategy proposed in this paper mainly focused
on applications in unstructured environments, our strategy can
be extended to be used in structured environments by incorporat-
ing high precision maps. In addition, a more accurate risk-cost
equation can be assigned by further subdividing the properties
of the obstacles. Therefore, the trajectory planning strategy will
expand its usage scenarios and improve the accuracy of risk map
construction through continuous study in the future.
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